On finite groups with many supersoluble subgroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a note on groups with many locally supersoluble subgroups

it is proved here that if $g$ is a locally graded group satisfying the minimal condition on subgroups which are not locally supersoluble, then $g$ is either locally supersoluble or a vcernikov group. the same conclusion holds for locally finite groups satisfying the weak minimal condition on non-(locally supersoluble) subgroups. as a consequence, it is shown that any infinite locally graded gro...

متن کامل

On Groups with Uncountably Many Subgroups of Finite Index

Let K be the kernel of an epimorphism χ : G → Z, for G a finitely presented group. If K has uncountably many normal subgroups of finite index r, then K has uncountably many subgroups (not necessarily normal) of any finite index greater than r. In particular, this is the case whenever G is subgroup separable and K is nonfinitely generated. Assume that G has an abelian HNN base contained in K. If...

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

Groups with countably many subgroups

We describe soluble groups in which the set of all subgroups is countable and show that locally (soluble-byfinite) groups with this property are soluble-by-finite. Further, we construct a nilpotent group with uncountably many subgroups in which the set of all abelian subgroups is countable.

متن کامل

infinite groups with many generalized normal subgroups

a subgroup $x$ of a group $g$ is almost normal if the index $|g:n_g(x)|$ is finite, while $x$ is nearly normal if it has finite index in the normal closure $x^g$. this paper investigates the structure of groups in which every (infinite) subgroup is either almost normal or nearly normal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2017

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-017-1041-4